Unit cell structure of water-filled monoolein into inverted hexagonal (H(II)) mesophase modeled by molecular dynamics.
نویسندگان
چکیده
The study investigates the unit cell structure of inverted hexagonal (H(II)) mesophase composed of monoolein (1-monoolein, GMO) and water using atomistic molecular dynamics methods without imposing any restraints on lipid and water molecules. Statistically meaningful and very contrast images of the radial mass density distribution, scrutinizing also the separate components water, monoolein, the polar headgroups of the lipids, the double bond, and the termini of the hydrocarbon chain (the tail), are obtained. The lipid/water interface structure is analyzed based on the obtained water density distribution, on the estimated number of hydrogen bonds per monoolein headgroup, and on the headgroup-water radial distribution functions. The headgroup mass density distribution demonstrates hexagonal shape of the monoolein/water interface that is well-defined at higher water/monoolein ratios. Water interacts with the headgroups by forming a three-layer diffusive mass density distribution, and each layer's shape is close to hexagonal, which is an indication of long-range structural interactions. It is found that the monoolein headgroups form a constant number of hydrogen bonds leaving an excessive amount of water molecules outside the first lipid coordination sphere. Furthermore, the quantity of water at the monoolein/water interface increases steadily upon extension of the unit cell, so the interface should have a very dynamic structure. Investigation of the hydrocarbon residues reveals high compression and well-expressed structuring of the tails. The tails form a very compressed and constrained structure of defined layers across the unit cell with properties corresponding to a more densely packed nonpolar liquid (oil). Due to the hexagonal shape the 2D packing frustration is constant and does not depend on the water content. All reported structural features are based on averaging of the atomic coordinates over the time-length of the simulation trajectories. That kind of processing allows the observation of the water/GMO interface shape and its stability and mobility at a time scale close to the ones of the intermolecular interactions.
منابع مشابه
Molecular dynamics approach to water structure of H(II) mesophase of monoolein.
The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (H(II)) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and ap...
متن کاملCompact polar moieties induce lipid-water systems to form discontinuous reverse micellar phase.
The role of molecular interactions in governing lipid mesophase organization is of fundamental interest and has technological implications. Herein, we describe an unusual pathway for monoolein/water reorganization from a bicontinuous mesophase to a discontinuous reverse micellar assembly, directed by the inclusion of polar macromolecules. This pathway is very different from those reported earli...
متن کاملSelf-consistent field theory for lipid-based liquid crystals: hydrogen bonding effect.
A model to describe the self-assembly properties of aqueous blends of nonionic lipids is developed in the framework of self-consistent field theory (SCFT). Thermally reversible hydrogen bonding between lipid heads and water turns out to be a key factor in describing the lyotropic and thermotropic phase behavior of such systems. Our model includes reversible hydrogen bonding imposed in the conte...
متن کاملThe Temperature-Composition Phase Diagram and Mesophase Structure Characterization of the Monoolein/Water System
The temperature-composition phase diagram of monoolein in water was constructed using X-ray diffraction in the range of 0 °C to 104 ° C and 0%
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 118 20 شماره
صفحات -
تاریخ انتشار 2014